您的位置: 首頁 >科技 >

利用神經(jīng)網(wǎng)絡(luò)加速AI的力量

2022-09-01 08:17:51 編輯:甄昭昭 來源:
導(dǎo)讀 使用圖靈測試作為預(yù)選賽,人工智能(AI)被定義為一種軟件解決方案,可以與人為領(lǐng)域的專家相提并論。當(dāng)IBM的Watson系統(tǒng)與前Jeopardy冠軍一起...

使用圖靈測試作為預(yù)選賽,人工智能(AI)被定義為一種軟件解決方案,可以與人為領(lǐng)域的專家相提并論。當(dāng)IBM的Watson系統(tǒng)與前Jeopardy冠軍一起玩Jeopardy時,世界上很多地方都看到了AI的第一個真實例子?,F(xiàn)在,深度學(xué)習(xí)使解決方案能夠與醫(yī)生相媲美地解釋MRI圖像,并與人類駕駛員相媲美地操作公共汽車(例如,拉斯維加斯自動駕駛班車)。

機器學(xué)習(xí)(ML)是AI的基本基礎(chǔ),它由用于構(gòu)建AI解決方案的算法和數(shù)據(jù)集組成。為了創(chuàng)建可以通過圖靈測試的真實AI系統(tǒng),ML子集必須通過新數(shù)據(jù)集和算法的不斷開發(fā)而不斷得到改進。盡管ML工具箱中已有許多種不同的算法,但數(shù)十年來,由于具有大量標(biāo)注的數(shù)據(jù),深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)算法才在性能上取得了重大飛躍,直到最近(大約2014年)用于培訓(xùn)和低成本計算和存儲的設(shè)備。

由于計算,存儲和分布式計算基礎(chǔ)架構(gòu)的快速改進,機器學(xué)習(xí)已發(fā)展成為更復(fù)雜的結(jié)構(gòu)化模型,例如深度學(xué)習(xí)(DL),生成對抗網(wǎng)絡(luò)(GAN)和強化學(xué)習(xí)(RL)–全部使用神經(jīng)網(wǎng)絡(luò)。監(jiān)督神經(jīng)網(wǎng)絡(luò)是一種算法,可以在經(jīng)過標(biāo)記數(shù)據(jù)訓(xùn)練后,根據(jù)圖像或模式識別來區(qū)分和做出判斷。神經(jīng)網(wǎng)絡(luò)的概念已經(jīng)存在了40多年了,但是在2014年左右,深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)開始擾亂不同的細(xì)分市場,使我們更接近通過圖靈測試。得益于今天的數(shù)據(jù)收集功能和大量的數(shù)據(jù),神經(jīng)網(wǎng)絡(luò)是成功執(zhí)行ML的驅(qū)動趨勢之一。

深度學(xué)習(xí)是指一組基于人工神經(jīng)網(wǎng)絡(luò)的ML模型,該模型模仿神經(jīng)元和人腦神經(jīng)網(wǎng)絡(luò)的工作機制。流行的神經(jīng)網(wǎng)絡(luò)模型有兩種:卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)模型,該模型廣泛用于與圖像相關(guān)的各種應(yīng)用中,例如自動駕駛,機器人,圖像搜索等。它可以為大多數(shù)基于自然語言處理(NLP)的文本或語音應(yīng)用程序提供支持,例如聊天機器人,虛擬家庭和辦公室助手以及同聲傳譯器。

生成對抗網(wǎng)絡(luò)(GAN)是一種ML技術(shù),由兩個深度神經(jīng)網(wǎng)絡(luò)在零和游戲框架中相互競爭組成。GAN通常以無人監(jiān)督的方式運行;因此,它可以幫助減少深度學(xué)習(xí)模型對標(biāo)記訓(xùn)練數(shù)據(jù)量的依賴性。

NLP是另一個推動機器學(xué)習(xí)進步的算法趨勢,特別是在虛擬家庭和辦公室助手領(lǐng)域。與神經(jīng)網(wǎng)絡(luò)類似,NLP是基于算法的基于語音和單詞的識別。隨著越來越多的AI公司采用這些趨勢并在其ML基礎(chǔ)之上執(zhí)行,它們將會成功。


免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!

最新文章

精彩推薦

圖文推薦

點擊排行

2016-2022 All Rights Reserved.平安財經(jīng)網(wǎng).復(fù)制必究 聯(lián)系QQ280 715 8082   備案號:閩ICP備19027007號-6

本站除標(biāo)明“本站原創(chuàng)”外所有信息均轉(zhuǎn)載自互聯(lián)網(wǎng) 版權(quán)歸原作者所有。