2016-2022 All Rights Reserved.平安財經(jīng)網(wǎng).復制必究 聯(lián)系QQ 備案號:
本站除標明“本站原創(chuàng)”外所有信息均轉載自互聯(lián)網(wǎng) 版權歸原作者所有。
郵箱:toplearningteam#gmail.com (請將#換成@)
大家好,小安來為大家解答以上的問題。卷積神經(jīng)網(wǎng)絡,關于卷積神經(jīng)網(wǎng)絡的介紹很多人還不知道,現(xiàn)在讓我們一起來看看吧!
1、卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經(jīng)網(wǎng)絡(Feedforward Neural Networks),是深度學習(deep learning)的代表算法之一。
2、卷積神經(jīng)網(wǎng)絡具有表征學習(representation learning)能力,能夠按其階層結構對輸入信息進行平移不變分類(shift-invariant classification),因此也被稱為“平移不變人工神經(jīng)網(wǎng)絡(Shift-Invariant Artificial Neural Networks, SIANN)”。
3、對卷積神經(jīng)網(wǎng)絡的研究始于二十世紀80至90年代,時間延遲網(wǎng)絡和LeNet-5是最早出現(xiàn)的卷積神經(jīng)網(wǎng)絡;在二十一世紀后,隨著深度學習理論的提出和數(shù)值計算設備的改進,卷積神經(jīng)網(wǎng)絡得到了快速發(fā)展,并被大量應用于計算機視覺、自然語言處理等領域。
4、卷積神經(jīng)網(wǎng)絡仿造生物的視知覺(visual perception)機制構建,可以進行監(jiān)督學習和非監(jiān)督學習,其隱含層內的卷積核參數(shù)共享和層間連接的稀疏性使得卷積神經(jīng)網(wǎng)絡能夠以較小的計算量對格點化(grid-like topology)特征,例如像素和音頻進行學習、有穩(wěn)定的效果且對數(shù)據(jù)沒有額外的特征工程(feature engineering)要求。
本文到此結束,希望對大家有所幫助。
2016-2022 All Rights Reserved.平安財經(jīng)網(wǎng).復制必究 聯(lián)系QQ 備案號:
本站除標明“本站原創(chuàng)”外所有信息均轉載自互聯(lián)網(wǎng) 版權歸原作者所有。
郵箱:toplearningteam#gmail.com (請將#換成@)